# UCLouvain

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie





#### Plan

- Introduction : a short recap
- Future colliders projections
- Self-coupling
- Invisible width
- CP
- Outlook

#### Not a complete list

# Introduction

#### The Standard Model : pre-H-story







**All massless** 

#### The Standard Model: symmetry breaking



#### Is the H boson SM-like?



But only one unknown prior to the H discovery C. Degrande

#### How well do we know the SM?



### Why does it matters?

DE

DF

- Only source of CPV (Baryon Asym.)
- Phase transition (History of the Universe)
- 2/3 portals towards DM,  $\nu$ ,...
- Understanding flavour



#### What is the future of the H boson?

#### What is the future of the H boson?



I don't know

# Exp. Projections

### LHC projection



#### **Couplings at future colliders**



#### **Couplings at future colliders**



Self-coupling

#### **H** boson and **EWPhT**





#### HH



#### 1807.04873

C. Degrande

20

 $\kappa_{\lambda}$ 

#### HH in the future



LHC prospect  $\lambda_3 \lesssim 1.5 \lambda_3^{SM}$ 

No dependence on the top coupling

#### **Direct vs indirect**

$$V(\Phi,S) = -m^2 \Phi^{\dagger} \Phi - \mu^2 S^2 + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 S^4 + \lambda_3 \Phi^{\dagger} \Phi S^2$$

 $m_h, m_H, \sin \alpha, \tan \beta, v_h$ 



### **Indirect HHH**

| g 9000000            | $\begin{array}{c} t \\ \bullet &H \\ \bullet & -H \\ t \end{array}$ |                                                                      |                                                                     |
|----------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|
| g 000000<br>g 000000 |                                                                     | $H \rightarrow \gamma$ $H \rightarrow \gamma$ $H \rightarrow \gamma$ |                                                                     |
| 1312.3322            | M.McCullough                                                        | e+e- → ZH                                                            | applications at future colliders                                    |
| <u>1607.03773</u>    | M.Gorbahn, U.Haisch                                                 | gg→H, H→γγ                                                           | approx. two-loop results $mh \rightarrow 0$                         |
| 1607.04251           | G.Degrassi, P.P. Giardino, F.M., D.Pagani                           | gg→H,WH,ZH,VBF, ttH<br>H→vv,WW*/ZZ*→41, gg                           | total and diff.                                                     |
| <u>1610.05771</u>    | W.Bizon, M.Gorbahn, U.Haisch,<br>G.Zanderighi                       | WH,ZH,VBF                                                            | total and diff. +<br>effects of QCD corrections                     |
| 1702.01737           | G. Degrassi, M. Fedele, P.P. Giardino                               | EWPO                                                                 | two-loop effects                                                    |
| 1702.07678           | G. Kribs, A. Maier, H. Rzehak, M.<br>Spannowksy, P. Waite           | EWPO                                                                 | two-loop effects                                                    |
| 1704.01953           | S. Di Vita, C. Grojean, G. Panico, M.<br>Riembau, T. Vantalon       | Direct+indirect                                                      | global fit in the EFT including<br>differential                     |
| 1709.08649           | F. Maltoni, D. Pagani, A. Shivaji, X. Zhao                          | VBF, VH, tHj ttH and $H\rightarrow 41$ .                             | Differential distributions with EW corrections. Release of MC codes |
| 1711.03978           | Di Vita, et al.                                                     | $e+e- \rightarrow ZH$ , $ZHH$                                        | Future colliders                                                    |

Invisible decay

#### NP and the H boson



#### **Invisible decay**

CMS-HIG-17-023



$$\mathcal{L} = \mathcal{L}_{SM} - rac{1}{2} \partial_\mu \phi \partial^\mu \phi - rac{1}{2} M^2 \phi^2 - c_\phi |H|^2 \phi^2$$

Immediate implications for any model with

Simplest extension of the SM: The H portal

 $Br(H \to Inv.) < 0.19 (0.15)$  at 95% CL

#### **Invisible decay**

CMS-HIG-17-023

$$\mathcal{L}_{\rm SHP} = \mathcal{L}_{\rm SM} + \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_0^2 S^2 - \frac{1}{2} \lambda_S |H|^2 S^2 - \frac{1}{4!} \lambda_4 S^4.$$



 $Br(H \to Inv.) < 0.19 (0.15) \text{ at } 95\% \text{ CL}$ 



#### **HVV CPV interaction**

#### SM-like? strength and nature of the interactions

$$\mathcal{O}_{W\widetilde{W}} = -\frac{g^2}{4} \left(\phi^{\dagger}\phi\right) \widetilde{W}^k_{\mu\nu} W^{\mu\nu\,k} \equiv -\frac{g^2}{4} \left(\phi^{\dagger}\phi\right) \epsilon_{\mu\nu\rho\sigma} W^{\rho\sigma\,k} W^{\mu\nu\,k}$$



Vanishing rates but affect distribution

#### **H-top CPV interaction**



## Outlook

- The H boson is compatible with the SM ... so far
  - Not all the couplings have been measured yet
  - No precision measurements yet
  - Go differential
- The H boson could be the portal to New Physics



We don't know

## Outlook

- The H boson is compatible with the SM ... so far
  - Not all the couplings have been measured yet
  - No precision measurements yet
  - Go differential
- The H boson could be the portal to New Physics



We don't know

Thank you!

#### H boson mass



ATLAS-CONF-2017-046